Nahtloses Stahlrohr für Struktur (GB/T8162-2008)
Standard: GB/8162-2008 | Legierung oder nicht: Legierung oder Kohlenstoff |
Sortengruppe: 10,20,35, 45,Q345,Q460,Q490,Q620,42CrMo,35CrMo usw | Anwendung: Strukturrohr, mechanisches Rohr |
Dicke: 1 - 100 mm | Oberflächenbehandlung: Als Anforderung des Kunden |
Außendurchmesser (rund): 10 - 1000 mm | Technik: Warmgewalzt oder kaltgewalzt |
Länge: Feste Länge oder zufällige Länge | Wärmebehandlung: Glühen/Normalisieren/Stressabbau |
Abschnittsform: Rund | Spezialrohr: Dickwandiges Rohr |
Herkunftsort: China | Verwendung: Konstruktion, Mechanik |
Zertifizierung: ISO9001:2008 | Test: ECT/UT |
Es wird hauptsächlich zur Herstellung von Kohlenstoffbaustahl, legiertem Baustahl und mechanischen Strukturen verwendet.
Kohlenstoffbaustahlsorte: 10,20,35, 45, Q345, Q460, Q490, Q620 usw
Güteklasse des legierten Baustahls: 42CrMo, 35CrMo usw
Stahlsorte | Qualitätsniveau | Chemische Zusammensetzung | ||||||||||||||
C | Si | Mn | P | S | Nb | V | Ti | Cr | Ni | Cu | Nd | Mo | B | Als" | ||
nicht größer als | nicht weniger als | |||||||||||||||
Q345 | A | 0,2 | 0,5 | 1.7 | 0,035 | 0,035 | 0,3 | 0,5 | 0,2 | 0,012 | 0,1 | —— | — | |||
B | 0,035 | 0,035 | ||||||||||||||
C | 0,03 | 0,03 | 0,07 | 0,15 | 0,2 | 0,015 | ||||||||||
D | 0,18 | 0,03 | 0,025 | |||||||||||||
E | 0,025 | 0,02 | ||||||||||||||
Q390 | A | 0,2 | 0,5 | 1.7 | 0,035 | 0,035 | 0,07 | 0,2 | 0,2 | 0,3 | 0,5 | 0,2 | 0,015 | 0,1 | — | — |
B | 0,035 | 0,035 | ||||||||||||||
C | 0,03 | 0,03 | 0,015 | |||||||||||||
D | 0,03 | 0,025 | ||||||||||||||
E | 0,025 | 0,02 | ||||||||||||||
Q42O | A | 0,2 | 0,5 | 1.7 | 0,035 | 0,035 | 0,07 | 0,2 | 0,2 | 0,3 | 0,8 | 0,2 | 0,015 | 0,2 | —— | —— |
B | 0,035 | 0,035 | ||||||||||||||
C | 0,03 | 0,03 | 0,015 | |||||||||||||
D | 0,03 | 0,025 | ||||||||||||||
E | 0,025 | 0,02 | ||||||||||||||
Q46O | C | 0,2 | 0,6 | 1.8 | 0,03 | 0,03 | 0,11 | 0,2 | 0,2 | 0,3 | 0,8 | 0,2 | 0,015 | 0,2 | 0,005 | 0,015 |
D | 0,03 | 0,025 | ||||||||||||||
E | 0,025 | 0,02 | ||||||||||||||
Q500 | C | 0J8 | 0,6 | 1.8 | 0,025 | 0,02 | 0,11 | 0,2 | 0,2 | 0,6 | 0,8 | 0,2 | 0,015 | 0,2 | 0,005 | 0,015 |
D | 0,025 | 0,015 | ||||||||||||||
E | 0,02 | 0,01 | ||||||||||||||
Q550 | C | 0,18 | 0,6 | 2 | 0,025 | 0,020 | 0,11 | 0,2 | 0,2 | 0,8 | 0,8 | 0,2 | 0,015 | 0,3 | 0,005 | 0,015 |
D | 0,025 | 0,015 | ||||||||||||||
E | 0,02 | 0,01 | ||||||||||||||
Q62O | C | 0,18 | 0,6 | 2 | 0,025 | 0,02 | 0,11 | 0,2 | 0,2 | 1 | 0,8 | 0,2 | 0,015 | 0,3 | 0,005 | 0,015 |
D | 0,025 | 0,015 | ||||||||||||||
E | 0,02 | 0,01 | ||||||||||||||
A. Zusätzlich zu den Qualitäten Q345A und Q345B sollte der Stahl mindestens eines der raffinierten Kornelemente Al, Nb, V und Ti enthalten. Je nach Bedarf kann der Lieferant ein oder mehrere raffinierte Kornelemente hinzufügen. Der Höchstwert muss den Angaben in der Tabelle entsprechen. Zusammengenommen beträgt der Anteil von Nb + V + Ti nicht mehr als 0,22 %b. Bei den Qualitäten Q345, Q390, Q420 und Q46O beträgt der Mo + Cr-Gehalt nicht mehr als 0,30 %c. Wenn Cr und Ni jeder Sorte als Restelemente verwendet werden, sollte der Gehalt an Cr und Ni nicht mehr als 0,30 % betragen; Wenn eine Ergänzung erforderlich ist, sollte der Inhalt den Anforderungen in der Tabelle entsprechen oder vom Lieferanten und Käufer durch Beratung festgelegt werden.d. Wenn der Lieferant sicherstellen kann, dass der Stickstoffgehalt den Anforderungen in der Tabelle entspricht, darf die Stickstoffgehaltsanalyse nicht durchgeführt werden. Wenn dem Stahl Al, Nb, V, Ti und andere Legierungselemente mit Stickstofffixierung zugesetzt werden, ist der Stickstoffgehalt nicht begrenzt. Der Stickstofffixierungsgehalt sollte im Qualitätszertifikat angegeben werden. E. Bei Verwendung von Vollaluminium beträgt der Gesamtaluminiumgehalt Alt ≥ 0020 %. |
Grad | Kohlenstoffäquivalent CEV (Massenanteil) / % | |||||
Nennwandstärke s≤ 16mm | Nennwandstärke S2>16 mm〜30 mm | Nennwandstärke S>30mm | ||||
Warmgewalzt oder normalgewalzt | Abschrecken + Anlassen | Warmgewalzt oder normalisiert | Abschrecken + Anlassen | Warmgewalzt oder normalisiert | Abschrecken + Anlassen | |
Q345 | <0,45 | — | <0,47 | — | <0,48 | 一 |
Q390 | <0,46 | 一 | W0.48 | — | <0,49 | — |
Q420 | <0,48 | 一 | <0,50 | <0,48 | <0,52 | <0,48 |
Q460 | <0,53 | <0,48 | W0,55 | <0,50 | <0,55 | W0,50 |
Q500 | 一 | <0,48 | 一 | <0,50 | 一 | W0,50 |
Q550 | — | <0,48 | .一 | <0,50 | 一 | <0,50 |
Q62O | — | <0,50 | — | <0,52 | — | W0.52 |
Q690 | — | <0,50 | — | <0,52 | — | W0.52 |
Mechanische Eigenschaften von Baustahl aus hochwertigem Kohlenstoffstahl und niedriglegierten hochfesten Baustahlrohren
Grad | Qualitätsniveau | Streckgrenze | Geringere Streckgrenze | Dehnung nach Bruch | Schlagtest | |||
Nennwandstärke | Temperatur | Energie absorbieren | ||||||
<16 mm | >16 mm〜 | 〉30 mm | ||||||
30 mm | ||||||||
nicht weniger als | nicht weniger als | |||||||
10 | — | >335 | 205 | 195 | 185 | 24 | — | — |
15 | — | >375 | 225 | 215 | 205 | 22 | — | 一 |
20 | —— | >410 | 245 | 235 | 225 | 20 | — | — |
25 | — | >450 | 275 | 265 | 255 | 18 | — | — |
35 | — | >510 | 305 | 295 | 285 | 17 | 一 | — |
45 | — | 2590 | 335 | 325 | 315 | 14 | — | — |
20 Mio | —• | >450 | 275 | 265 | 255 | 20 | — | 一 |
25 Mio | — | >490 | 295 | 285 | 275 | 18 | — | — |
Q345 | A | 470–630 | 345 | 325 | 295 | 20 | — | 一 |
B | 4~20 | 34 | ||||||
C | 21 | 0 | ||||||
D | -20 | |||||||
E | -40 | 27 | ||||||
Q39O | A | 490–650 | 390 | 370 | 350 | 18 | ||
B | 20 | 34 | ||||||
C | 19 | 0 | ||||||
D | -20 | |||||||
E | -40 | 27 | ||||||
Q42O | A | 520〜680 | 420 | 400 | 380 | 18 | ||
B | 20 | 34 | ||||||
C | 19 | 0 | ||||||
D | -20 | |||||||
E | -40 | 27 | ||||||
Q46O | C | 550〜720 | 460 | 440 | 420 | 17 | 0 | 34 |
D | -20 | |||||||
E | -40 | 27 | ||||||
Q500 | C | 610〜770 | 500 | 480 | 440 | 17 | 0 | 55 |
D | -20 | 47 | ||||||
E | -40 | 31 | ||||||
Q550 | C | 670〜830 | 550 | 530 | 490 | 16 | 0 | 55 |
D | -20 | 47 | ||||||
E | -40 | 31 | ||||||
Q62O | C | 710〜880 | 620 | 590 | 550 | 15 | 0 | 55 |
D | -20 | 47 | ||||||
E | -40 | 31 | ||||||
Q690 | C | 770〜94. | 690 | 660 | 620 | 14 | 0 | 55 |
D | -20 | 47 | ||||||
E | -40 | 31 |
Mechanische Eigenschaften von Rohren aus legiertem Stahl
NO | Grad | Empfohlenes Wärmebehandlungsregime | Zugeigenschaften | Geglühtes oder hochtemperaturvergütetes Stahlrohr. Lieferzustand: Brinellhärte HBW | ||||||
Abschrecken (Normalisieren) | Temperieren | StreckgrenzeMPa | Zugfestigkeit MPa | Bruchdehnung A% | ||||||
Temperatur | Kühlmittel | Temperatur | Kühlmittel | |||||||
Zuerst | Zweite | nicht weniger als | nicht größer als | |||||||
1 | 40Mn2 | 840 | Wasser, Öl | 540 | Wasser, Öl | 885 | 735 | 12 | 217 | |
2 | 45Mn2 | 840 | Wasser, Öl | 550 | Wasser, Öl | 885 | 735 | 10 | 217 | |
3 | 27SiMn | 920 | Wasser | 450 | Wasser, Öl | 980 | 835 | 12 | 217 | |
4 | 40MnBc | 850 | Öl | 500 | Wasser, Öl | 980 | 785 | 10 | 207 | |
5 | 45MnBc | 840 | Öl | 500 | Wasser, Öl | 1 030 | 835 | 9 | 217 | |
6 | 20Mn2Bc'f | 880 | Öl | 200 | Wasser, Luft | 980 | 785 | 10 | 187 | |
7 | 20CrdJ | 880 | 800 | Wasser, Öl | 200 | Wasser, Luft | 835 | 540 | 10 | 179 |
785 | 490 | 10 | 179 | |||||||
8 | 30Cr | 860 | Öl | 500 | Wasser, Öl | 885 | 685 | 11 | 187 | |
9 | 35Cr | 860 | Öl | 500 | Wasser, Öl | 930 | 735 | 11 | 207 | |
10 | 40Cr | 850 | Öl | 520 | Wasser, Öl | 980 | 785 | 9 | 207 | |
11 | 45Cr | 840 | Öl | 520 | Wasser, Öl | 1 030 | 835 | 9 | 217 | |
12 | 50Cr | 830 | Öl | 520 | Wasser, Öl | 1 080 | 930 | 9 | 229 | |
13 | 38CrSi | 900 | Öl | 600 | Wasser, Öl | 980 | 835 | 12 | 255 | |
14 | 20CrModJ | 880 | Wasser, Öl | 500 | Wasser, Öl | 885 | 685 | 11 | 197 | |
845 | 635 | 12 | 197 | |||||||
15 | 35CrMo | 850 | Öl | 550 | Wasser, Öl | 980 | 835 | 12 | 229 | |
16 | 42CrMo | 850 | Öl | 560 | Wasser, Öl | 1 080 | 930 | 12 | 217 | |
17 | 38CrMoAld | 940 | Wasser, Öl | 640 | Wasser, Öl | 980 | 835 | 12 | 229 | |
930 | 785 | 14 | 229 | |||||||
18 | 50CrVA | 860 | Öl | 500 | Wasser, Öl | 1 275 | 1 130 | 10 | 255 | |
19 | 2OCrMn | 850 | Öl | 200 | Wasser, Luft | 930 | 735 | 10 | 187 | |
20 | 20CrMnSif | 880 | Öl | 480 | Wasser, Öl | 785 | 635 | 12 | 207 | |
21 | 3OCrMnSif | 880 | Öl | 520 | Wasser, Öl | 1 080 | 885 | 8 | 229 | |
980 | 835 | 10 | 229 | |||||||
22 | 35CrMnSiA£ | 880 | Öl | 230 | Wasser, Luft | 1 620 | 9 | 229 | ||
23 | 20CrMnTie-f | 880 | 870 | Öl | 200 | Wasser, Luft | 1 080 | 835 | 10 | 217 |
24 | 30CrMnTie*f | 880 | 850 | Öl | 200 | Wasser, Luft | 1 470 | 9 | 229 | |
25 | 12CrNi2 | 860 | 780 | Wasser, Öl | 200 | Wasser, Luft | 785 | 590 | 12 | 207 |
26 | 12CrNi3 | 860 | 780 | Öl | 200 | Wasser, Luft | 930 | 685 | 11 | 217 |
27 | 12Cr2Ni4 | 860 | 780 | Öl | 200 | Wasser, Luft | 1 080 | 835 | 10 | 269 |
28 | 40CrNiMoA | 850 | —— | Öl | 600 | Wasser, Luft | 980 | 835 | 12 | 269 |
29 | 45CrNiMoVA | 860 | — | Öl | 460 | Öl | 1 470 | 1 325 | 7 | 269 |
A. Zulässiger Einstellbereich der in der Tabelle aufgeführten Wärmebehandlungstemperatur: Abschrecken ± 15 °C, Anlassen bei niedriger Temperatur ± 20 °C, Anlassen bei hoher Temperatur Boden 50 °C.B. Beim Zugversuch können Quer- oder Längsproben entnommen werden. Im Falle einer Meinungsverschiedenheit wird die Längsschnittstichprobe als Grundlage für die Schlichtung herangezogen.C. Borhaltiger Stahl kann vor dem Abschrecken normalisiert werden, und die Normalisierungstemperatur sollte nicht höher als seine Abschrecktemperatur sein.D. Lieferung gemäß einem vom Nachfrager vorgegebenen Datensatz. Wenn der Nachfrager keine Angaben macht, kann die Lieferung gemäß allen Angaben erfolgen.e. Das erste Abschrecken von Titanstahl mit Ming Meng kann durch Normalisieren ersetzt werden. F. Isothermes Abschrecken bei 280 °C bis 320 °C. G. Wenn im Zugversuch Rel nicht gemessen werden kann, kann Rp0,2 anstelle von Rel gemessen werden. |
Zulässige Abweichung des Außendurchmessers des Stahlrohrs
Art des Stahlrohrs | Zulässige Toleranz |
Warmgewalztes Stahlrohr | ± 1 % D oder ± 0,5, je nachdem, welcher Wert größer ist |
Kaltgezogenes Stahlrohr | Boden 0,75 % D oder Boden 0,3, je nachdem, welcher Wert höher ist |
Zulässige Abweichung der Wandstärke von warmgewalzten (verlängerten) Stahlrohren
Art des Stahlrohrs | D | S/D | Zulässige Toleranz |
Warmgewalztes Stahlrohr | <102 | — | ± 12,5 % S oder ± 0,4, je nachdem, welcher Wert größer ist |
>102 | <0,05 | ± 15 % S oder ± 0,4, je nachdem, welcher Wert größer ist | |
>0,05 〜0,10 | ± 12,5 % S oder ± 0,4, je nachdem, welcher Wert größer ist | ||
>0,10 | + 12,5 % S -10%S | ||
Wärmegedehntes Stahlrohr | 一 | 土 15%S |
Zulässige Abweichung der Wandstärke von kaltgezogenen (gewalzten) Stahlrohren
| S | Zulässige Toleranz |
Kaltziehen (Walzen) | V | + 15 % S Oder 0,15, je nachdem, welcher Wert größer ist —10 % S |
>3 — 10 | + 12,5 % S —10%S | |
>10 | 土 10%S |
Chemische Zusammensetzung, Dehnung, Härte, Stoß, Quetschen, Biegen, Ultraschallprüfung, Wirbelstrom, Erkennung, Leckerkennung, verzinkt
Nahtlose Stahlrohre für strukturelle Zwecke, nahtlose Stahlrohre für mechanische Strukturen im Standard GB/8162-2008. In der Serie nahtloser Stahlrohre gibt es eine Art Material namens Q345B. Nahtlose Stahlrohre sind eine niedriglegierte Serie. Bei den niedriglegierten Werkstoffen kommt dieser Werkstoff am häufigsten vor. Das nahtlose Stahlrohr Q345 ist eine Art Stahlrohrmaterial. Q ist die Ausbeute dieses Materials, und 345 ist die Ausbeute dieses Materials, die etwa 345 beträgt. Und der Streckgrenzewert nimmt mit zunehmender Materialdicke ab. Q345A-Ebene, ist keine Auswirkung; Q345B, ist 20 Grad normale Temperaturauswirkung; Q345C-Klasse, ist ein Aufprall von 0 Grad; Q345D, hat einen Aufprall von -20 Grad; Klasse Q345E, minus 40 Grad. Auch der Schlagwert ist bei unterschiedlichen Schlagtemperaturen unterschiedlich. Q345A, Q345B, Q345C, Q345D, Q345E. Dies ist der Grad der Unterscheidung, der anzeigt, dass hauptsächlich die Aufpralltemperatur unterschiedlich ist.
Ausführungsstandard
1. Nahtloses Rohr für Struktur (GB/T8162-2018) ist ein nahtloses Stahlrohr für allgemeine Struktur und mechanische Struktur. 2. Nahtlose Stahlrohre für den Flüssigkeitstransport (GB/T8163-2018) werden für die Beförderung von Wasser, Öl, Gas und anderen Flüssigkeiten im Allgemeinen nahtlose Stahlrohre verwendet. 3. Nahtlose Stahlrohre für Nieder- und Mitteldruckkessel (GB3087-2018) sind warmgewalzte und kaltgezogene (gewalzte) nahtlose Stahlrohre aus hochwertigem Kohlenstoffbaustahl, die zur Herstellung von Heißdampfrohren und Siedewasserrohren verschiedener Art verwendet werden Konstruktionen von Nieder- und Mitteldruckkesseln sowie Heißdampfrohren und gemauerten Bogenrohren für Lokomotivkessel. 4. Nahtloses Stahlrohr für Hochdruckkessel (GB5310-2018) wird zur Herstellung von Hochdruck- und Überdruck-Wasserrohrkesselheizflächen aus hochwertigem Kohlenstoffstahl, legiertem Stahl und nahtlosem Edelstahlrohr aus rostfreiem hitzebeständigem Stahl verwendet.
Spezifikationsblatt für nahtlose Stahlrohre Q345B | |||
Spezifikation | Spezifikation | Spezifikation | Spezifikation |
14*3 | 38*5,5 | 89*5 | 133*18 |
14*3,5 | 42*3 | 89*5,5 | 159*6 |
14*4 | 42*3,5 | 89*6 | 159*6,5 |
16*3 | 42*4 | 89*7 | 159*7 |
18*2 | 42*5 | 89*7,5 | 159*8 |
18*3 | 42*6 | 89*8 | 159*9,5 |
18*4 | 42*8 | 89*9 | 159*10 |
18*5 | 45*3 | 89*10 | 159*12 |
19*2 | 45*4 | 89*11 | 159*14 |
21*4 | 45*5 | 89*12 | 159*16 |
22*2,5 | 45*6 | 108*4,5 | 159*18 |
22*3 | 45*7 | 108*5 | 159*20 |
22*4 | 48*4 | 108*6 | 159*28 |
22*5 | 48*4,5 | 108*7 | 168*6 |
25*2,5 | 48*5 | 108*8 | 168*7 |
25*3 | 48*6 | 108*9 | 168*8 |
25*4 | 48*7 | 108*10 | 168*9,5 |
25*5 | 48,3*12,5 | 108*12 | 168*10 |
25*5,5 | 51*3 | 108*14 | 168*11 |
27*3,5 | 51*3,5 | 108*15 | 168*12 |
27*4 | 51*4 | 108*16 | 168*14 |
27*5 | 51*5 | 108*20 | 168*15 |
27*5,5 | 51*6 | 114*5 | 168*16 |
28*2,5 | 57*4 | 114*6 | 168*18 |
28*3 | 57*5 | 114*7 | 168*20 |
28*3,5 | 57*5,5 | 114*8 | 168*22 |
28*4 | 57*6 | 114*8,5 | 168*25 |
30*2,5 | 60*4 | 114*9 | 168*28 |
32*2,5 | 60*4 | 114*10 | 180*10 |
32*3 | 60*5 | 114*11 | 194*10 |
32*3,5 | 60*6 | 114*12 | 194*12 |
32*4 | 60*7 | 114*13 | 194*14 |
32*4,5 | 60*8 | 114*14 | 194*16 |
32*5 | 60*9 | 114*16 | 194*18 |
34*3 | 60*10 | 114*18 | 194*20 |
34*4 | 76*4,5 | 133*5 | 194*26 |
34*4,5 | 76*5 | 133*6 | 219*6,5 |
34*5 | 76*6 | 133*7 | 219*7 |
34*6,5 | 76*7 | 133*8 | 219*8 |
38*3 | 76*8 | 133*10 | 219*9 |
38*3,5 | 76*9 | 133*12 | 219*10 |
38*4 | 76*10 | 133*13 | 219*12 |
38*4,5 | 89*4 | 133*14 | 219*13 |
38*5 | 89*4,5 | 133*16 | 219*14 |
219*16 | 273*36 | 356*28 | 426*12 |
219*18 | 273*40 | 356*36 | 426*13 |
219*20 | 273*42 | 377*9 | 426*14 |
219*22 | 273*45 | 377*10 | 426*17 |
219*24 | 298,5*36 | 377*12 | 426*20 |
219*25 | 325*8 | 377*14 | 426*22 |
219*26 | 325*9 | 377*15 | 426*30 |
219*28 | 325*10 | 377*16 | 426*36 |
219*30 | 325*11 | 377*18 | 426*40 |
219*32 | 325*12 | 377*20 | 426*50 |
219*35 | 325*13 | 377*22 | 457*9,5 |
219*38 | 325*14 | 377*25 | 457*14 |
273*7 | 325*15 | 377*32 | 457*16 |
273*8 | 325*16 | 377*36 | 457*19 |
273*9 | 325*17 | 377*40 | 457*24 |
273*9,5 | 325*18 | 377*45 | 457*65 |
273*10 | 325*20 | 377*50 | 508*13 |
273*11 | 325*22 | 406*9,5 | 508*16 |
273*12 | 325*23 | 406*11 | 508*20 |
273*13 | 325*25 | 406*13 | 508*22 |
273*15 | 325*28 | 406*17 | 558,8*14 |
273*16 | 325*30 | 406*22 | 530*13 |
273*18 | 325*32 | 406*32 | 530*20 |
273*20 | 325*36 | 406*36 | 570*12,5 |
273*22 | 325*40 | 406*40 | 610*13 |
273*25 | 325*45 | 406*55 | 610*18 |
273*28 | 356*9,5 | 406,4*50 | 610*78 |
273*30 | 356*12 | 406,4*55 | 624*14,2 |
273*32 | 356*15 | 406*60 | 824*16,5 |
273*35 | 356*19 | 406*65 | 824*20 |
Chemische Komponente
Stahlsorte | Qualitätsniveau | Chemische Zusammensetzung | ||||||||||||||
C | Si | Mn | P | S | Nb | V | Ti | Cr | Ni | Cu | Nd | Mo | B | Als“ | ||
Nicht größer als | Nicht weniger als | |||||||||||||||
Q345 | A | 0,2 | 0,5 | 1.7 | 0,035 | 0,035 | 0,3 | 0,5 | 0,2 | 0,012 | 0,1 | —— | — | |||
B | 0,035 | 0,035 | ||||||||||||||
C | 0,03 | 0,03 | 0,07 | 0,15 | 0,2 | 0,015 | ||||||||||
D | 0,18 | 0,03 | 0,025 | |||||||||||||
E | 0,025 | 0,02 | ||||||||||||||
A. Zusätzlich zu den Sorten Q345A und Q345B sollte der Stahl mindestens eines der raffinierten Kornelemente Al, Nb, V und Ti enthalten. Je nach Bedarf kann der Lieferant ein oder mehrere raffinierte Getreideelemente hinzufügen. Der Höchstwert muss den Angaben in der Tabelle entsprechen. In Kombination beträgt der Anteil von Nb + V + Ti nicht mehr als 0,22 % B. Für die Sorten Q345, Q390, Q420 und Q46O beträgt der Mo + Cr-Gehalt nicht mehr als 0,30 % C. Wenn Cr und Ni jeder Sorte als Restelemente verwendet werden, sollte der Gehalt an Cr und Ni nicht mehr als 0,30 % betragen; Wenn eine Ergänzung erforderlich ist, sollte der Inhalt den Anforderungen in der Tabelle entsprechen oder vom Lieferanten und Käufer durch Beratung festgelegt werden.D. Wenn der Lieferant sicherstellen kann, dass der Stickstoffgehalt den Anforderungen in der Tabelle entspricht, wird die Stickstoffgehaltsanalyse möglicherweise nicht durchgeführt. Wenn dem Stahl Al, Nb, V, Ti und andere Legierungselemente mit Stickstofffixierung zugesetzt werden, ist der Stickstoffgehalt nicht begrenzt. Der Stickstofffixierungsgehalt sollte im Qualitätszertifikat angegeben werden. E. Bei Verwendung von Vollaluminium beträgt der Gesamtaluminiumgehalt Alt≥0020 %. |
Grad | Kohlenstoffäquivalent CEV (Massenanteil) / % | |||||
Nennwandstärke S≤ 16 mm | Nennwandstärke S2>16 mm〜30 mm | Nennwandstärke S>30 mm | ||||
Warmgewalzt oder normalisiert normalisiert | Abschrecken+Temperieren | Warmgewalzt oder normalisiert | Abschrecken+Temperieren | Warmgewalzt oder normalisiert | Abschrecken+Temperieren | |
Q345 | <0,45 | — | <0,47 | — | <0,48 | 一 |
Mechanisches Eigentum
Mechanische Eigenschaften von Baustahl aus hochwertigem Kohlenstoffstahl und niedriglegierten hochfesten Baustahlrohren
Grad | Qualitätsniveau | Streckgrenze | Geringere Streckgrenze | Dehnung nach Bruch | Schlagtest | |||
Nennwandstärke | Temperatur | Energie absorbieren | ||||||
<16 mm | >16 mm〜 | 〉30 mm | ||||||
30 mm | ||||||||
Nicht weniger als | Nicht weniger als | |||||||
Q345 | A | 470–630 | 345 | 325 | 295 | 20 | — | 一 |
B | 4~20 | 34 | ||||||
C | 21 | 0 | ||||||
D | -20 | |||||||
E | -40 | 27 |
Testanforderung
Chemische Zusammensetzung: Dehnung, Härte, Stoß, Quetschen, Biegen, Ultraschallprüfung, Wirbelstrom, Erkennung, Leckerkennung, verzinkt