OEM/ODM usine Chine 12cr1MOV isolation de fumée de gaz tuyau de tube de chaudière en acier allié tuyau hydraulique chaud de mer de carbone sans soudure
La différence entre UDT et EDT :
Le principe est différent
1. Détection des défauts par ultrasons : utilisez l'énergie ultrasonique pour pénétrer profondément dans le matériau métallique, et lorsqu'une section entre dans une autre section, la caractéristique de réflexion au bord de l'interface est utilisée pour inspecter les défauts des pièces.
2. Détection des défauts par courants de Foucault : utilisez la bobine d'excitation pour générer des courants de Foucault dans l'élément conducteur et mesurez le changement du courant de Foucault à l'aide de la bobine de détection, de manière à obtenir les informations pertinentes sur le défaut du composant.
Différentes utilisations
1. Détection de défauts par ultrasons : elle peut être utilisée aussi bien en laboratoire que sur le site d’ingénierie. Cet instrument peut être largement utilisé dans la fabrication, la métallurgie du fer et de l'acier, la transformation des métaux, l'industrie chimique et d'autres domaines nécessitant une détection des défauts et un contrôle qualité. Il est également largement utilisé dans les inspections de sécurité en service dans l'aérospatiale, le transport ferroviaire, les chaudières et les appareils sous pression, etc. ainsi que dans l'évaluation de la durée de vie. C'est un incontournable dans l'industrie des contrôles non destructifs.
2. Détection des défauts par courants de Foucault : il ne convient qu'aux matériaux conducteurs et ne peut détecter que des défauts en surface ou à proximité de la couche superficielle, ce qui est peu pratique à utiliser pour les composants de formes complexes. Dans les centrales thermiques, il est principalement utilisé pour inspecter les tubes de condenseur, les aubes de turbine à vapeur, les trous centraux et les soudures du rotor de turbine à vapeur, etc.
Aperçu
Application
Il est principalement utilisé pour fabriquer de l'acier de construction au carbone de haute qualité, de l'acier de construction allié et des tuyaux en acier sans soudure en acier inoxydable résistant à la chaleur pour les tuyaux de chaudière à vapeur à haute pression et au-dessus.
Principalement utilisé pour le service à haute pression et à haute température de la chaudière (tube de surchauffeur, tube de réchauffeur, tube de guidage d'air, tube de vapeur principal pour chaudières à haute et ultra haute pression). Sous l'action des gaz de combustion à haute température et de la vapeur d'eau, le tube va s'oxyder et se corroder. Il est nécessaire que le tube en acier présente une durabilité élevée, une résistance élevée à l'oxydation et à la corrosion et une bonne stabilité structurelle.
Catégorie principale
Qualité d'acier de construction au carbone de haute qualité : 20 g, 20 mng, 25 mng
Nuance d'acier de construction en alliage : 15mog, 20mog, 12crmog, 15crmog, 12cr2mog, 12crmovg, 12cr3movsitib, etc.
Nuance d'acier résistant à la rouille et résistant à la chaleur : 1cr18ni9 1cr18ni11nb
Composant chimique
Grade | Qualité Classe | Propriété chimique | ||||||||||||||
C | Si | Mn | P | S | Nb | V | Ti | Cr | Ni | Cu | Nd | Mo | B | SLA" | ||
pas plus que | pas moins que | |||||||||||||||
Q345 | A | 0,20 | 0,50 | 1,70 | 0,035 | 0,035 | 0,30 | 0,50 | 0,20 | 0,012 | 0,10 | — | — | |||
B | 0,035 | 0,035 | ||||||||||||||
C | 0,030 | 0,030 | 0,07 | 0,15 | 0,20 | 0,015 | ||||||||||
D | 0,18 | 0,030 | 0,025 | |||||||||||||
E | 0,025 | 0,020 | ||||||||||||||
Q390 | A | 0,20 | 0,50 | 1,70 | 0,035 | 0,035 | 0,07 | 0,20 | 0,20 | 0,3. | 0,50 | 0,20 | 0,015 | 0,10 | — | — |
B | 0,035 | 0,035 | ||||||||||||||
C | 0,030 | 0,030 | 0,015 | |||||||||||||
D | 0,030 | 0,025 | ||||||||||||||
E | 0,025 | 0,020 | ||||||||||||||
Q420 | A | 0,20 | 0,50 | 1,70 | 0,035 | 0,035 | 0,07 | 0,2. | 0,20 | 0,30 | 0,80 | 0,20 | 0,015 | 0,20 | — | — |
B | 0,035 | 0,035 | ||||||||||||||
C | 0,030 | 0,030 | 0,015 | |||||||||||||
D | 0,030 | 0,025 | ||||||||||||||
E | 0,025 | 0,020 | ||||||||||||||
Q460 | C | 0,20 | 0,60 | 1,80 | 0,030 | 0,030 | 0,11 | 0,20 | 0,20 | 0,30 | 0,80 | 0,20 | 0,015 | 0,20 | 0,005 | 0,015 |
D | 0,030 | 0,025 | ||||||||||||||
E | 0,025 | 0,020 | ||||||||||||||
Q500 | C | 0,18 | 0,60 | 1,80 | 0,025 | 0,020 | 0,11 | 0,20 | 0,20 | 0,60 | 0,80 | 0,20 | 0,015 | 0,20 | 0,005 | 0,015 |
D | 0,025 | 0,015 | ||||||||||||||
E | 0,020 | 0,010 | ||||||||||||||
Q550 | C | 0,18 | 0,60 | 2h00 | 0,025 | 0,020 | 0,11 | 0,20 | 0,20 | 0,80 | 0,80 | 0,20 | 0,015 | 0,30 | 0,005 | 0,015 |
D | 0,025 | 0,015 | ||||||||||||||
E | 0,020 | 0,010 | ||||||||||||||
Q620 | C | 0,18 | 0,60 | 2h00 | 0,025 | 0,020 | 0,11 | 0,20 | 0,20 | 1h00 | 0,80 | 0,20 | 0,015 | 0,30 | 0,005 | 0,015 |
D | 0,025 | 0,015 | ||||||||||||||
E | 0,020 | 0,010 | ||||||||||||||
À l'exception des nuances Q345A et Q345B, l'acier doit contenir au moins un des éléments à grains raffinés Al, Nb, V et Ti. Selon les besoins, le fournisseur peut ajouter un ou plusieurs éléments céréaliers raffinés, la valeur maximale devant répondre aux exigences du tableau. Lorsqu'ils sont combinés, Nb + V + Ti <0,22% °Pour les qualités Q345, Q390, Q420 et Q46O, Mo + Cr <0,30% oLorsque chaque qualité de Cr et Ni est utilisée comme élément résiduel, la teneur en Cr et Ni ne doit pas être supérieur à 0,30 % ; lorsqu'il doit être ajouté, sa teneur doit répondre aux exigences du tableau ou être déterminée par le fournisseur et l'acheteur par voie de consultation. J Si le fournisseur peut garantir que la teneur en azote répond aux exigences du tableau, l'analyse de la teneur en azote peut ne soit pas effectuée. Si de l'Al, du Nb, du V, du Ti et d'autres éléments d'alliage fixant l'azote sont ajoutés à l'acier, la teneur en azote n'est pas limitée. La teneur en fixation d'azote doit être spécifiée dans le certificat de qualité. Lors de l'utilisation de tout l'aluminium, la teneur totale en aluminium AIt ^ 0,020 % B |
Propriété mécanique
No | Grade | Propriété mécanique | ||||
|
| Traction | Rendement | Étendre | Impact (J) | Maniabilité |
1 | 20G | 410- | ≥ | 24/22% | 40/27 | — |
2 | 20MnG | 415- | ≥ | 22/20% | 40/27 | — |
3 | 25MnG | 485- | ≥ | 20/18% | 40/27 | — |
4 | 15MoG | 450- | ≥ | 22/20% | 40/27 | — |
6 | 12CrMoG | 410- | ≥ | 21/19% | 40/27 | — |
7 | 15CrMoG | 440- | ≥ | 21/19% | 40/27 | — |
8 | 12Cr2MoG | 450- | ≥ | 22/20% | 40/27 | — |
9 | 12Cr1MoVG | 470- | ≥ | 21/19% | 40/27 | — |
10 | 12Cr2MoWVTiB | 540- | ≥ | 18/-% | 40/- | — |
11 | 10Cr9Mo1VNbN | ≥ | ≥ | 20/16% | 40/27 | ≤ |
12 | 10Cr9MoW2VNbBN | ≥ | ≥ | 20/16% | 40/27 | ≤ |
Tolérance
Épaisseur de paroi et diamètre extérieur :
S'il n'y a pas d'exigences particulières, le tuyau sera livré avec un diamètre extérieur normal et une épaisseur de paroi normale. Comme suivre la feuille
Désignation du classement | Méthode de fabrication | Taille du tuyau | Tolérance | |||
Note normale | Haute qualité | |||||
WH | Tuyau laminé à chaud (extrudé) | Diamètre extérieur normal (D) | <57 | 0,40 | ±0,30 | |
57〜325 | SW35 | ±0,75%D | ±0,5%D | |||
S>35 | ±1%D | ±0,75%D | ||||
>325 〜6。。 | + 1%D ou + 5.Prenez le moins un一2 | |||||
>600 | + 1%D ou + 7,Prenez le moins un一2 | |||||
Épaisseur de paroi normale (S) | <4.0 | ±|・丨) | ±0,35 | |||
>4.0-20 | + 12,5%S | ±10%S | ||||
>20 | DV219 | ±10%S | ±7,5%S | |||
219 euros | + 12,5%S -10%S | 土10%S |
WH | Tuyau de dilatation thermique | Diamètre extérieur normal (D) | tous | ±1%D | ±0,75 %. |
Épaisseur de paroi normale (S) | tous | + 20%S -10%S | + 15%S -io%s | ||
toilettes | Étiré à froid (laminé) Tuyau | Diamètre extérieur normal (D) | <25,4 | ±'L1j | — |
>25,4 〜4() | ±0,20 | ||||
>40 〜50 | |:0,25 | — | |||
>50 〜60 | ±0,30 | ||||
>60 | ±0,5%D | ||||
Épaisseur de paroi normale (S) | <3,0 | ±0,3 | ±0,2 | ||
>3.0 | S | ±7,5%S |
Longueur:
La longueur habituelle des tubes en acier est de 4 000 mm à 12 000 mm. Après consultation entre le fournisseur et l'acheteur et remplissage du contrat, il peut être livré des tubes en acier d'une longueur supérieure à 12 000 mm ou inférieure à 1 000 mm mais non inférieure à 3 000 mm ; courte longueur Le nombre de tubes en acier de moins de 4 000 mm mais d'au moins 3 000 mm ne doit pas dépasser 5 % du nombre total de tubes en acier livrés
Poids de livraison :
Lorsque le tube en acier est livré en fonction du diamètre extérieur nominal et de l'épaisseur de paroi nominale ou du diamètre intérieur nominal et de l'épaisseur de paroi nominale, le tube en acier est livré en fonction du poids réel. Il peut également être livré selon le poids théorique.
Lorsque le tube en acier est livré en fonction du diamètre extérieur nominal et de l'épaisseur de paroi minimale, le tube en acier est livré en fonction du poids réel ; les parties de l’offre et de la demande négocient. Et c'est indiqué dans le contrat. Le tube en acier peut également être livré selon le poids théorique.
Tolérance de poids :
Selon les exigences de l'acheteur, après consultation entre le fournisseur et l'acheteur et dans le contrat, l'écart entre le poids réel et le poids théorique du tube en acier de livraison doit répondre aux exigences suivantes :
a) Tuyau en acier simple : ± 10 % ;
b) Chaque lot de tubes en acier d'une taille minimale de 10 t : ± 7,5 %.
Exigence de test
Essai hydraulique :
Les tuyaux en acier doivent être testés hydrauliquement un par un. La pression d'essai maximale est de 20 MPa. Sous la pression d'essai, le temps de stabilisation ne doit pas être inférieur à 10 s et le tuyau en acier ne doit pas fuir.
Après accord de l'utilisateur, le test hydraulique peut être remplacé par un test par courants de Foucault ou un test de fuite de flux magnétique.
Test non destructif :
Les tuyaux qui nécessitent une inspection plus approfondie doivent être inspectés par ultrasons un par un. Après que la négociation nécessite l’accord des parties et soit précisée dans le contrat, d’autres contrôles non destructifs peuvent être ajoutés.
Test d'aplatissement :
Les tubes d'un diamètre extérieur supérieur à 22 mm doivent être soumis à un essai d'aplatissement. Aucun délaminage visible, aucune tache blanche ou impureté ne doit se produire pendant toute l’expérience.
Essai de torchage :
Selon les exigences de l'acheteur et indiquées dans le contrat, le tuyau en acier avec un diamètre extérieur ≤ 76 mm et une épaisseur de paroi ≤ 8 mm peut être effectué un test d'évasement. L'expérience a été réalisée à température ambiante avec une conicité de 60°. Après l'évasement, le taux d'évasement du diamètre extérieur doit répondre aux exigences du tableau suivant et le matériau d'essai ne doit pas présenter de fissures ou de déchirures.
Type d'acier
| Taux d'évasement du diamètre extérieur du tuyau en acier/% | ||
Diamètre intérieur/diamètre extérieur | |||
<0,6 | >0,6 〜0,8 | >0,8 | |
Acier de construction au carbone de haute qualité | 10 | 12 | 17 |
Acier allié structurel | 8 | 10 | 15 |
•Le diamètre intérieur est calculé pour l'échantillon. |